
'-A116 237 HSK4S RESEARCH LASS ALIGU CA F/S 9/2
AOVANCEV SOAK UDIERSTAPING. (U)

.JWACASSIF19D AFWALTR-S*-1095 "

III 1.05
L2

III1 IIIt1 ll 8NIH ~ hi411.6

MICROCOPY RESOLUTION TEST CHART

NPONAL BUIR[AU Of STANDAROS 1)63 A

L .A*

AFWAL-TR-82-1095 i

-uu

G. R. Nudd and S. 0. Fouse

Hughes Research Laboratories
3011 Malibu Canyon Road

Malibu, CA 90265

Interim Report for Period
I April 1980 through 30 September 1981

December 1981

Approved for Public Release; Distribution Unlimited ' S,*

Avionics Laboratory
Air Force Wright Aeronautical Laboratories

Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

I iSCA_

12Q

|
r)_ t

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

LOUIS A. TAMBURINO DONALD L. MOON, Chief
Project Engineer Information Processing Technology Branch

Avionics Laboratory

FOR THE COMMANDER Ac Ioss -n For

DT1C TAB

RICHARD H. BOIVIN, Colonel, USAF Just rient IIL.
Chief, System Avionics Division
Avionics Laboratory --.

Distr tbut I ..n!

-fr Dist :..

rop'f 0sAo

"If your address has changed, if you wish to be removed from our mailing list, or

. if the addressee is no longer employed by your organization please notify AFWAL/AAAT-,
W-PAFB, OH 45433 to help us maintain a current mailing list".

!

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

'D 10

-- _ - I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dots Entered)

*REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
ROOBEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFWAL-TR-82-1095 - 7
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Interim Technical Report
ADVANCED IMAGE UNDERSTANDING 1 Ap il 1980 - 30 Sept 1981

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

G. R. Nudd, S. D. Fouse F33615-80-C-1080

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Hughes Research Laboratories AREA & WORK UNIT NUMBERS

3011 Malibu Canyon Road 3119 00 02
Malibu, CA 90265
I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency December 1981
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 107
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base (AFWAL/AART) UNCLASSIFIED
Dayton, Ohio 45433 ISa. DECLASSIFICATION/DOWNGRADINGDaytn, Oio 4433SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary end identify by block number)

Convolution, residue-based arithmetic, residue-based processor, image under-
standing, texture, line finder.

20. ABSTRACT (Continue on reverse side if necessary end identify by block number)

This report presenL the work that has been performed by Hughes Research
Laboratories on the ?.- Image Understanding contract from April 1, 1980
to September 30, 1981. ,*.., work is primarily concerned with the development
of hardware to allow real-time operation of the image understanding algorith'e
which are also being developed under the same contract.

DD I FAN17, 1473 EDITION OF ' NOV 65IS OBSOLETE UNCLASSIFIED ASD : 13
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

4 . ,.

UNCLASSIFIED I L
SECURITY CLASSIFICATION OF THIS PAGE(IWhon Date Entered)

UNCLASSIFIED
* SECURITY CLASSIFICATION OF THIS PAGE(Ihen Data Entered)

TABLE OF CONTENTS

SECTION
PAGE

LIST OF ILLUSTRATIONS 5

SUMM4ARY 7

PROGRESS REPORT - April 1980 to October 1980

1 INTRODUCTION...........................11

2 METHOD...............................13

3 RESIDUE-BASED ARITHMETIC IMAGE UNDERSTANDING
SYSTEM (RADIUS).........................15

4 TEXTURE CLASSIFICATION SYSTEM....................23

A. Small Window Convolution. 23

B. Small Window Statistical Measure. 25

C. Normalization 28

D. Large Window Statistical Calculation. 28

E. Linear Transformation 31

F. Discriminant Function Evaluation. 31

G. Gate Count Tabulation 31

5 LINE FINDER SYSTEM 33

A. Edge Strength Computation and Detection 33

B. Thinning and Thresholding 37

C. Edge Linking..........................40

fiE. Edge Tracking 44

F. Gate Count Tabulation 46

6 SYSTEM INTEGRATION TO HOST PROCESSOR 47

REFERENCES 49

3

SECTION PAGE

PROGRESS REPORT -October 1980 to April 1981

1 INTRODUCTION 51

2 SYSTEMS ANALYSIS AND DESIGN. 55

3 A RESIDUE IMAGED BASED PROCESSOR 57

A. Processor Description 57

B. Kernel Generation and Encoding. 59

C. A programmable Residue Computation
LSI Circuit 61

D. Decoding. 65

E. Programming and Control 70

F. A VLSI Version of a Residue Computation
Chip. 72

G. Functional Capabilities 74

H. TJNIBUS Interface. 77

4 SU14MARY. 83

REFERENCES 85

PROGRESS REPORT - April 1981 to October 1981

1 INTRODUCTION 89

2 PROGRESS ON RADIUS DEVELOPMENT 91

3 RADIUS-UNIBUS INTERFACE ...oo...o. o 93

4 APPLICATION OF RADIUS o... oo.. 95

5 DESIGN AUTOMATION. 99

A6 A LOCARA LGIACGPROCESSOR...o.ooooo.o...o 101

*17 SUMMARY o. o.. ... 105

*REFERENCESo . . . o . oo 107

4

LIST OF ILLUSTRATIONS

FIGURE PAGE

PROGRESS REPORT - April 1980 to October 1980

1 A residue-based processor 16

2 5 x 5local areaprocessor. 18

3 Residue adder 20

4 5 xl1RADIUS processor chip 21

5 A5 xS5RADIUS processor using 5x1I chips. 22

6 Laws texture classifier 24

7 5 x 5 variance calculation. 26

8 Sliding window updating 27

9 Structure for integer divide. 29

10 Large window energy measure (11xj). 30

11 Linear transformation structure 32

12 Nevatia-Babu line finder. 34

13 Logic diagram for edge detection. 35

14 Edge masks M'k(i,J) in six directions 36

15 Logic for performing magnitude comparison 38

16 Logic for performing thinning and thresholding39

18 Some successor configurations illustrating

edge linking rules. 41

19 Logic for edge linking 42

20 Coding for edge linking PIA43

21 Predessor/successor data format . . .*.. 45

22 Logic for edge tracking . 45

5

FIGURE PAGE

PROGRESS REPORT - October 1980 to April 1981

1 General structure for residue processor 58

2 Kernel generator encoding for 5 x 5 processor 60

3 A functional block diagram for 5 x I residue

processor circuit 62

4 Schematic of 5 x I residue circuit 63

5 Photograph of CRC 181 layout 64

6 Structure of 5 x 5 processor utilizing 5 x 1
processor circuits 66

7 Chinese remainder theorem residue decoder (4 base

system, 5 bits/base) 68

8 Mixed radix based residue decoder (4 base system,
5 bits/base) 69

9 Structure for programming and control of residue

processor 71

10 Photograph of processor wirewrap board 73

11 Data flow for 5 x 5 residue custom circuit 75

12 Residue processor based on 5 x 5 custom chip 76

13 Commercial/custom UNIBUS-processor interface 79

14 Bus structure of UNIBUS-processor interface 81

PROGRESS REPORT - April 1981 to October 1981

1 Scaling factor chosen to utilize dynamic range of a
residue processor 97

2 Inputs and output for logic processor 102

3 An architecture for a local area logic processor 103

6

>1 SUMMARY

The following represents the work undertaken by Hughes Research Laboratories,

Malibu, California in support of the Image Processing Institute of the University

of Southern California. The work was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored by the Air Force

Avionics Laboratory at Wright Patterson Air Force Base, Ohio, under contract

F33615-80-C-1080, ARPA Order No. 3119. The work period represented by this

report (in three separate sections) is I April 1980 through 30 September 1981.

PROGRESS REPORT

April 1980 to October 1980

SECT ION 1

INTRODUCTION

The main emphasis of this program was the investigation of the impact and

potential benefit of very large scale integration (VLSI) and high-density IC

technologies for image understanding. The task was somewhat wider than our

previous work for the Image Understanding Program, where we successfully

developed special-purpose high-speed primitives for the low-level processing

operations.

The progress that is currently being made in silicon technology and the

development of more sophisticated algorithms for image understanding has provided

the basis for a major advance in processing capability. The work described here

was undertaken at Hughes Research Laboratories (HRL), where we are actively

involved in the development of image analysis and understanding software for

applications such as terminal homing, image bandwidth compression, and scene

matching. We also have numerous active research programs in micro-electronic

technology. The people involved in this program were also involved in the VHSIC-O

program. In addition, at HRL we have eleven VHSIC-3 technology development pro-

grams. We are, therefore, aware of the major developments in these and other

important programs, and where appropriate, we have coordinated our efforts.

Our major emphasis has been to review numerous complex image-understanding

algorithms and devise VLSI concepts for them. This includes understanding the

processing, data flow, timing, and storage requirements. We have also per-

* formed a detailed partitioning of potential VLSI chips based on total gate count.

silicon area, communication requirements, and power considerations. From this

work, three potential systems have emerged: a line finder, texture analyzer, and

segmenter. The details of these systems are included in this report, together

with the necessary gate estimate and parts count for VLSI chips (Tables I and 2).

In addition to this, we have, through our detailed analysis of the VLSIT

processor requirements and configuration, identified a highly modular program-

mable digital processing element RADIUS (residue-based arithmetic image-

understanding system). These concepts have been developed in state-of-the-art

Table I. Gate Count for Texture Classification System

5 line kernel generation 15K gates

5 x 5 convolution 27K gates

5 x 5 variance 1OK gates

Normalization K!channel

Large window statistical calculation 8.25Klchannel

Transform (M input channels) 2.1K'M/output channel

Table 2. Gate Count for Line Finder System

Edge detection 178K

Thinning 190 gates

Edge linking- 500

Edge tracing 12 Mbit memory + 5K logic gates

n-MOS technology, and we anticipate that the first demonstration will be

available in the early part of 1982. Since RADIUS is based on residue arithme-

tic, it can perform a wide variety of processing operations (including variance

and moment calculation) and all convolutions and local area operations with very

high circuit function density. The modularity of our approach allows rapid and

easy design in VLSI and provides programmability and portability.

In addition, a major emphasis of all our work has been to ensure that the

hardware concepts and changes will be fully integratable with existing commercial

hardware, such as the DEC mainframes. To this end, we are developing the

necessary interfaces to the RADIUS processor so that it can be used as an

attached processor to the DEC series, communicating through the DEC-UNIBUS.

12

SECTION 2

METHOD

Our objective for this project has been to provide some general results

that will allow the image understanding community to take full advantage of

VLSI technology as it becomes available. We expect our results to include

definitions for several special-purpose chips that will have wide applicability

to IU systems. The question to be answered then is what types of functions

should be cast into a VLSI chip. The goals of this program are analogous to the

on-going VHSI efforts where a search continues for commonality across a broad

range of DOD systems. Here we have taken a longer-range view specifically for

image understanding. The project has been coordinated with the Hughes VHSIC

program and shares many goals with it. The major difference is that we would

like to see commonality across IU systems. We are tracking the VHSIC program,

and, where appropriate, we will be able to take advantage of the work being

done there that complements our own effort.

The area of this study has necessarily been somewhat broad. It has differed

considerably from our previous work where we developed special-purpose high-

speed primitives for Iii. Our aim this period has been to stand back and take a

broad view of IU requir~ments and to attack the question of what special-

purpose VLSI functions would be appropriate for IU systems that will not be

developed under present or foreseeable VHSIC programs. Our approach has

* been to

* Select three representative systems to study and characterize;

* Perform a commonality study across the three systems;

* Do logic designs for each system;

0 Partition the designs onto VLSI chips;

* Test and refine designs using simulation techniques;

0 Identify relevant system parameters;

* Generalize to additional systems and refine function partitioning.

So far, we have selected three systems and performed a preliminary commonality

* study, identifying one subsystem as a likely candidate for a VLSI chip. This

13

islocal arapocso which will perform sliding window arithmetic

operations including convolution, variance, and moment calculations. We have

designed a processor based on the residue arithmetic technique that should

provide significantly better performance for this type of operation than a

binary processor. In addition, we have performed logic designs on two of the

three systems selected: the line finder and the texture classification systems.

What remains to be done is to design the third system, the segmenter, refine

our designs using results from simulations, and then extend the results to

additional IU systems.

14

SECTION 3

RESIDUE-BASED ARITHMETIC IMAGE UNDERSTANDING SYSTEM4 (RADIUS)

Almost all of the systems we have looked at require some sort of local-area

processing where the output pixel is a function of the input pixel and its M

nearest neighbors, where M is usually 8, 24, 48, etc. The function takes

numerous forms, but typically is either arithmetic or logical, or a combination

of both. If the function is arithmetic and does not require division or

absolute value, then residue arithmetic techniques can be used. Examples where

these conditions are met can be found in two of the systems we are studying:

the line finder and the texture classification systems. The line finder detects

edges by convolving the image with six 5 x 5 masks, each mask responding to a

different direction. Since the convolution operation requires multiplications

and additions, this is easily done using residue techniques. Similarly, the

texture classification system convolves the input image with several 5 x 5

masks.

An arithmetic local area processor seems to be a natural choice for a

subsystem that can take advantage of VLSI technology. This is because of the

complexity of the logic for doing multiples. Using current technology, a

high-speed multiplier requires an entire chip (such as the TRW 10-MHz multiplier).

One approach being considered for real-time hardware is to compromise on the

coefficients and thereby reduce the complexity of the hardware. The residue

techniques can offer significant advantages without compromise, since multi-

plication can be performed using look-up tables; these tables will be small

because the bases used will be small. As an illustration of this, Figure 1

shows the components involved in RADIUS. The input data are initially encoded

into their equivalent representation in each base. This is most easily done

using a ROM look-up table with an address space equal to the input dynamic

range, and a bit depth equal to the number of bits required to represent the

Base-i. The actual computation is then performed by the local area processors

using one processor per base. The processor output word size is identical to

15

'4

10265-1

ENCODERDBASE RADIUS PROCESSOR
B1 BASE B 1

ENCODER RDU RCSO

BASE RDU RCSO

B2 BASE 2 _LL

INPUT RESIDUE
DATA DECODER

ENCODER [- RADIUS PROCESSOR
~BASE---BASE BN.BN. 1 -

BEOE RADIUS PROCESSOR
BAS BASE BN

Figure 1. A residue-based processor.

16

the input word size with no loss in accuracy. This is due to the modular

nature of residue arithmetic. The data out of the convolvers then goes into

a residue-to-binary decoder. This block can be composed of a very large look-

up table or a system composed of ROMs and adders. The exclusive use of look-up

tables is well suited to VLSI since these are highly regular structures and

hence can be made to be very dense and inexpensive.

Many arithmetic operations can be performed with table look-ups; but with-

out the residue concept, this approach is typically not feasible, as the tables

required become overwhelmingly large. Since both the line-finder system and

the texture system utilize 5 x 5 convolutions, the processor system should be

capable of being used to perform 5 x 5 convolutions with programmable weights.

* The dynamic range capabilities of the system should allow for 6-bit input and

6-bit kernel weights for a total output dynamic range of 17 bits. In addition,

the system should be able to operate at a 10-MHz data rate. The dynamic range

of a residue computation system is determined by the product of all the bases.

Using 31, 29, 23, and 1.9 as bases will give us a dynamic range of 392,863,
17which exceeds 2 .The bases will have other benefits since they are all prime

numbers. -

Figure 2 shows a block diagram for a 5 x 5 local area processor for a

single base. There are five data inputs, one for each line of the 5 x 5 area.

Input data is put into a register which is the first element of a five-element

shift register. When new data is transferred in, the previous data is trans-

f erred to the next register, and so on. There are five inputs, and thus, five

shift registers with five elements each, for a total of 25 registers. The con-

tents of each of the 25 registers are used to address 32-element by 5-bit RAMs.

These RAMs are look-up tables for the multiplication of the input data and the

kernel weight. The outputs of the 25 RAMs are then added by a tree of

24 residue (or modular) adders. A residue adder calculates the (A + B) mod

* base.

There are several noteworthy points about this design. First, only 5 bits

come out of the multiply or add. This is because these operations are cyclical,

* and the output values are in the same range as each of the input values.

Second, the only part of the processor that is dependent on the base is the

residue adder. Since the multiplier must be programmed for the weights anyway,

17

1 10265-2

ADOR DATA

AADD

AADD
55

5 5

AD

the choice of base is also programmed at the same time. And finally, concerning

the programming of the RAMs, a bidirectional data bus will be provided on the

data lines of the RAMs to allow programming as well as to serve as a test point

in the processor. Additional control lines into a binary decoder will be required

for programming and controlling the bus for testing. A possible design for the

residue adder is shown in Figure 3. Essentially, the device performs a binary

addition of the two operands, compares the result to the base, and subtracts the

base if the result is greater than or equal to the base. The adder is programmed

by providing the base value to the comparator and the two's complement value of

the base to the second adder. The programming can be done in one of two ways.

First, and preferable, is to provide a register on the chip for the base value

and another register for the two's complement of the bases. The value in the

register must then be made available to each of the residue adders that will be

on the chip. The second alternative is to make the base programmable by using

a ROM. This has the advantage that base vaiues can be stored directly in the

* adder, which will prevent possible routing prblems.

We are developing a chip based on RADIUS. However, to reduce the cost of

development and the associated risk, we are res ricting the chip to a 5 x 1 area

processor. If this demonstration is successful, e will be able to use the

designs and digitized data base as a common module_ to be prepared across an

entire VLSI chip, resulting in a very high density, igh throughput processor.

Figure 4 shows the design for a 5 x 1 processor, and igure 5 shows the con-

figuration of a 5 x 5 convolution system which utilize the 5 x 1 processor chip.

The data are encoded using a 64-element by 20-bit ROM. he kernel is generated

using four 20-bit wide line delays, 5 bits for each base. The output of the line

delays is input directly to an array of 20 5 x 1 processor , five for each base.

For each base, four 1,024 x 5-bit ROMs are used to sum the \sults of the five

rows. Note that conventional adders cannot be used since thee additions must
be done modularly, just as on the chip. Finally, 5 bits from ch base convolver

is input to a decoder network, which will be an array of ROMs anr possibly some

logic. The output of the decoder is then a 17-bit binary word.

19

CC.)

* 0

--

< <~U- -j C N

WA 0 0.cc.c

00
I-)

-'.4

c20

0265-4

OUBTOU

DAT
R.A. 5 RSIDU ADE

523

jlZ

00

~x mx m x~

0 000 00 00 0000 0 00 00

0 o 0 00, 0 N0 00 0000 0 0000

M In In In C xM ~ C

0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0

In) Int O r -- flL)L~
x (rN

0 0 L
0W 0i j u

0v _________v__av_ 0 r

0 0N 00 N o1, o l o z o0 *4 ac,22,

I v

SECTION 4

TEXTURE CLASSIFICATION SYSTEM

As mentioned earlier, logic design was performed for both the texture

classification system and the line finder system. This section describes the

design generated for the texture system. Figure 6 illustrates the data flow

of the texture system. The input video is processed in N independent channels,

where each channel generates an element of a feature vector. This means that

for each scalar pixel input there is a vector value output, the length of the

vector being equal to N, the number of channels in the system. The processing

done in the channels involves a small window convolution, a normalization step,

and a large window energy measure. The outputs are combined to form a vector,

which is then transformed using a linear transformation. The elements of the

transformed vector are used to evaluate a discriminant function, the value of

which is used to perform the classification. Alternatively, the transformed

feature vector can be input to a segmentation routine.

Six major functions must be performed:

0 Small window convolution

* Small window statistical calculation

a Scaling

*a Large window statistical calculation

* Linear transformation

0 Discriminant function evaluation.

The operations involved in each of the functions are discussed below, along

with the hardware required to perform the functions.

IA. SMALL WINDOW CONVOLUTION

The first step in the processing involves computing a 5 x 5 convolution.

The design of a system (RADIUS) to perform this computation using the technique

of residue arithmetic is presented in the previous section. The basic block

that performs the 5 x 1 convolution is now being designed as an NMOS chip (CRC

181) at the Hughes Carlsbad Research Center.

23

LAWS' TEXTURE SYSTEM

9518-1

INPUT DATA RATE
N2 F PIXEL/SEC - NXN SERIALLY SCANNED IMAGE

- F IMAGES/SEC

8 N2 F BITS/SEC

KERNEL (5 x5) (4 LINES MEMORY)
GENERATION

40 N2F BITS/SEC

40 40 40 40

(24 +1
8 8 8 8 N2 F (25 PIXEL MEMORY)

KERNEL 4 LINES MEMORY

NORMALIZATION 5 5Sv 6
49+

F 1 SORT

ENERGY MEASURE -- 31 LINES
. .. (LARGE WINDOW) MEMORY

(31 x 31) STATISTICS -10 OPERATIONS/PIXEL
8d 8 8, N2F

PRINCIPAL F MATR
COMPONENT IX M2 X
TRANSFORMATION 8 MULTIPLY M (M- 1) +
MULTIPLY 8M OF

FEATURE SELECTION (THRESHOLDING)

CLASSIFICATION 8 M' (N') 2 F SEGMENTATION

DISCRIMINANT 8 M)2F)2F

FUNCTION F POLYNONIAL SEGMENTEREVALUATION 8 COEFFICIENTS

Figure 6. Laws texture classifier.

24

B. SMALL WINDOW STATISTICAL MEASURE

A general structure for calculating a statistical moment over a

two-dimensional window was described in Hughes invention disclosure PD80078;

Figure 7 shows the specific structure for calculating the variance over a

5 x 5 window. This architecture assumes that the image data are being input

in raster scan format. As each pixel is introduced into the system, the window

that is being processed is shifted one column to the right, dropping the left-

most column and adding the column on the right. This means that the function

for the new window position can be calculated by subtracting the contribution

of the lost column and adding the contribution from the new column. It should

be noted, as illustrated in Figure 8, that as the center of the 5 x 5 window

moves across the image each subsequent kernel can be formed by the removal of

a single pixel at the top right, for instance, and the addition of one new

pixel at the bottom left. With this proviso, we can scan the image directly

by successively eliminating the 5 pixel column at the trailing edge and adding

the new column on the right as shown. Figure 8 illustrates this method for

updating the window function.

This technique greatly reduces the necessary data bandwidth for calculat-

ing the mean and the sum of squares for the processing window; these can then

be combined to form the variance. The structure shown includes shift registers

for pixel storage, column storage for the mean calculation, and the column

storage for the sum of squares calculation. The only arithmetic logic required

for this structure is four 3-input adders and three multipliers.

This is a function that could be implemented using a residue technique,

since only arithmetic functions are being performed. Since the preceding

function is already being performed using residue arithmetic, the conversion

back to binary could be done after the moment calculation. The structure would

look identical, but the blocks themselves would each be smaller. For example,

With a smaller wordsize the memory would be reduced. Also, the multiplier box

could be replaced with look-up tables, thus providing a savings in hardware. To

determine the feasibility, a statistical dynamic range analysis will be performed

* to see how many bases would be required and thus if the residue technique could

provide normalization.

25

102656b

PIXEL STORAGE

Figure 7.XE SHIF REGSTRaecluai.

5 LNE ENGHS26N

I+

ADDED
COLUMN

DROPPED DROPPED -M

COLUMN PIXEL

I CENTER
PIXEL

OLD NEW

I Diii
_____ __ _ ____ __ ____ --

5 jE NEW
SLIDING NE
WINDOW PIXEL

Figure 8. Sliding window updating.

27

C. NORMALIZATION

The next major function to be performed is a division or normalization

function. The output of the convoiutions are divided by the output of the

small window moment calculation, on a pixel by pixel basis. This requires that

there be some memory to delay the output of the convolutions while the moment

is being calculated. The memory required would be approximately 5 line lengths

x 8 bits x N channels.

A pipelined system for performing an integer divide is shown in Figure 9.

This performs a division between two binary numbers using the direct method:

an 8 bit divisor would require 8 stages. If more precision were required,

more stages could be used, and these would calculate the fractional part of the

answer. The direct method was chosen over the iterative method because of the

synchronous nature of this system.

D. LARGE WINDOW STATISTICAL CALCULATION

The structure for performing the large window statistical calculation is

the same as for the small window calculation. The function suggested by Laws

is the sum of the absolute values of the pixels.

Figure 10 shows a structure fc, performing this function. As suggested

in the discussion of the small window moment calculation, this structure could

be implemented in residue. In fact, if the normalization step could be skipped,

then the whole system could be accomplished in residue. There are two problems,

however:

0 An absolute value cannot be accomplished in residue, and thus
the next best thing would be to use the sum of squares.

0 A preliminary dynamic range analysis using the sum of squares
over a 15 x 15 window indicates that the system would need to
support a dynamic range in excess of 36 bits. This would definitely
be prohibitive in that a large number of bases would be required and
the bases themselves would require over 5 bits to encode.

It may be that a statistical dynamic range analysis will show that it is possible

to achieve a low probability of overflow with a more reasonable dynamic range

(e.g., <30 bits).

28

10265-20

13 8

xx

SWITCH SWITCHa

C'

IF A 0 aA

Figure 9.Structure for integer divide.

29

102658
IMAGE: LXL
WINDOW: NXNINU

FigureIXE 10.E Large wido energy mesrL~x)

+3

COUM SU-TRG

E. LINEAR TRANSFORMATION

This function will generate a vector with M components by forming linear

combinations of the N components of the input vector. Since the structure shown

in Figure 11 can be used to generate a single component of the output vector,

the entire output vector can be generated by replicating this structure M times.

This structure is basically the same as that used for the convolution. It is

composed of N registers, N multipliers, and N-i adders. As with the convolution,

the value of the linear weights will be programmable, with the actual mechan-

ism for programming depending on the structure of the multiplier (either memory

look-up or logic). The only difference would be in the format of the data

input. For the convolution, the data are shifted through the registers; but

for the linear transformer, the registers are all loaded in parallel.

F. DISCRIMINANT FUNCTION EVALUATION

No hardware was designed for this processing step since the form of the

function is unknown. If the function is linear, then the structure used in the

* previous step could also be used for this one. Any other form, such as a higher-

order polynomial, would require additional multipliers and adders.

G. GATE COUNT TABULATION

Table 1 summarizes the results of the texture system design, presenting

the number of gates required for each function. These data will be used later

in the study for the VLSI partitioning.

31

102659
INPUT MULTIPLIERS ADDER TREE

x

8 OUT

x N1 LATCH 8 xN

4N- 8 8

Figure 1. Linear transformation structure.

3Z

SECTION 5

LINE FINDER SYSTEM

This section describes the logic design of the line finder system.

Figure 12 shows the data flow graph for the~system and identifies four major

functions:

* Edge detection

* Edge thinning

* Edge linking

* Edge tracing.

A design is presented for each of the four functions, and an estimated gate

count is given.

A. EDGE STRENGTH CONFUTATION AND DETECTION

Edge strength computation is performed by convolving 5 x 5 masks in six

directions with the image of interest (Figure 13). The mask directions are set

at 3Q0 intervals, and the weights are shown in Figure 14. Following edge

strength computation, the magnitudes from the six directions are compared, and

the direction with greatest magnitude is selected as the edge vector for the

pixel location.

There is some question as to what the optimum mask size, weights, and

number of mask directions should be. For example, a larger mask size (say

5 x 5) is more immune to noise, but takes considerably more hardware to implement

(than, say, a-3 x 3 mask). The same can be said for implementing the masks in

six directions as opposed to four. It would be desirable from a hardware point

- i of view to use a small mask size and as few mask directions as possible without

sacrificing too much on performance. RADIUS can be used to perform the six

convolutions. Following these six convolutions, direction tags will be added

~1 to the edge magnitudes (see Figure 13). Each data word consists of 12 bits at

I this stage, 8 bits for magnitude, and 4 bits for direction. The magnitude

part of each direction is then compared with that of the other directions, until

the direction with greatest magnitude is found. Five comparators are needed to

perform the magnitude comparisons.

* 4 33

81 N '

5 1F

KERNEL (5;5) 14 LINES MEMORY)
GENE RATION

40 NOF

40 40 40 40 40 40

5 5 CONV 20X 25 PIXEL
19- MEMORY

EDGE DETECTION 5CMI'S. I

12 NOF EDGE MAO. 8 BITS)
(EDGE DIR. 4 BITS)

KERNEL (3, 3 1 12 LINES MEMORY)

F
THINNING 4-#- THRESHOLD IS CMPS 15 ADDS)

KERNEL (2 LINES MEMORY)I

PREDECESSOR. SUCCESSOR
GENERATION (-10 COMPARES
FOR 3 .3 TEMPLATE)

EDGE ICU RRENTl Y REQUIRES 2 FRAME
LINKING MEMORY 3 PASSES REQUIRED)

LIST OF CONNECTEDEDESGET
Figure 12. Nevatia-Babu line finder.

34

10265 10

MAGNITDEUEDG
COMPARISONCOPRSN VTR

CONVOLUTIONN

121
5 X35

~~-1

10265-11

-100 -100 0 100 100 -100 32 100 100 100

-100 -100 0 100 100 -100 -78 92 100 100

-100 -100 0 100 100 -100 -100 0 100 100

-100 -100 0 100 100 -100 -100 -92 78 100

-100 -100 0 100 100 -100 -100 -100 -32 100

(a) 00 (b) 300

100 100 100 100 100 100 100 100 100 100

-32 78 100 100 100 100 100 100 100 100

-100 -92 0 92 100 0 0 0 0 0

-100 -100 -100 -78 32 -100 -100 -100 -100 -100

-100 -100 -100 -100 -100 -100 -100 -100 -100 -100

(c) 600 (d) 900

100 100 100 100 100 100 100 100 32 -100

100 100 100 78 -32 100 100 92 -78 -100

100 92 0 -92 -100 100 100 0 -100 -100

32 -78 -100 -100 -100 100 78 -92 -100 -100

-100 -100 -100 -100 -100 100 32 -100 -100 -100

(e) 1200 (f) 1500

Figure 14. Edge masks Ml(i,j) in six directions.

36

Figure 15 shows the logic for performing the magnitude comparison. The

corresponding bits of each data word are compared in turn, and greater than

t (G) and less than (L) signals propagate towards the msb bits. GO9} and L{9}

indicate whether A is greater than or less than B. If G{9} and L{91 are both

low, then the two words are the same. Sixty four gates would be necessary to

implement a full 8-bit comparator. Hence, 320 gates would be necessary to

implement the five comparators in the edge detection step. It has been estimated

that it takes 178K gates to implement the six residue convolvers. This is by

far the most hardware intensive computational part.

B. THINNING AND THRESHOLDING

Thinning in Nevatia's process is accomplished by comparing the edge

magnitude and direction at a pixel location with that of some of its surrounding

eight neighbors. To qualify as an edge point, the following rules must be

observed:

0 The edge magnitude at the pixel location must be greater than that
of its two neighbors in a direction normal to-the direction of this
edge. The normal to a 30 edge is approximated by the diagonals of a
3 x 3 grid.

* The edge directions of the two neighboring pixels, as defined above
must be within 1 unit difference (30) from that of the central
pixel.

* The edge magnitude of the central pixel must exceed a certain fixed
threshold. This threshold is arbitrarily set at some low value.

When implementing in hardware, the algorithm can be divided into two parts:

* the first accesses the edge magnitude and direction of the two neighbors

*normal to the direction of the edge; the second compares the magnitude and

direction of the central pixel with those of the two neighbors and a fixed

threshold to ensure that the second and third conditions above are met.

Figure 16 shows the logic for performing thinning and thresholding. The eight

neighbors of the central pixel are first sent to a switching network which

decodes the edge direction of the central pixel and allows the edge'-data for

the correct two neighbors to pass on to the comparison network. In the second

37

10265 12

AG A

.4 4 4~~~ 0* 0 4-'0

A A

B.B8

G L,

G U

A.l B.

Gi = A. + G B+G, AL AB, 4 LiK *+ L 8B

(4 GATES) (4 GATES)

TOTAL NUMBER OF GATES TO IMPLEMENT 8 BIT COMPARATOR = 8 X (4 + 4) = 64 GATES

Figure 15. Logic for performing magnitude comparison.

10265 14

NEIGHBORS RELATIVE
ABSOLUTE TO ORIENTATION OF
NEIGHBORS MIDDLE PIXEL

L

8

G M. MAG M.MAG

THRESH THRESH?

8
M.MAG M. MAG'

Nb ()C. MAG C. MAG ?

____ (5 M.o~o COIR G> OIT

00110 MIR G IMAGR-

MMD. GDIR M I-

Figure000 16. Logi for pef rm n th n ig and 1 h e odg

Nbr (3)39

part, the edge magnitudes and directions are compared; and, if the second and

third conditions are met, an edge point is presumed present. A gate count

reveals that 190 gates are needed: 8 for the switching network and 181 for the

comparison network.

C. EDGE LINKING

At this point, the data format for each pixel is pictured in Figure 17.

One bit is assigned to indicate if the pixel is an edge point, 3 bits to indicate

the direction of the edge, and 8 bits to indicate edge strength. The next step

is to link the edge points together by forming predecessor and successor members.

There are, at most, three possible candidates to be a predecessor or successor

among the eight neighbors of an edge point. However, an edge point can have,

at most, two predecessors and two successors. In such a case, only the primary

predecessor (or successor) is encoded, and a special bit is marked to indicate

the presence of a fork. The following rules are observed in edge linking:

0 The orientation of a predecessor (successor) must be less than
1 unit difference (30') from that of the central edge point.

* If there is more than 1 possible predecessor (successor), a fork
will exist if they are not 4-neighbors, or if their orientations
differ by 2 units (60') if they are 4-neighbors. In such a case,
the predecessor (successor) with the greater magnitude is encoded
as the primary predecessor (successor). If the possible candidates
are 4-nei'ghbors with the same orientation, the chosen candidate is
the nearer of the two in the Euclidean sense.

The interested reader is referred to Ref s. 1 and 2 for more details on the rules

concerning edge linking. Figure 18 shows some successor configurations illustrat-

ing the above rules.

The logic for edge linking is shown in Figure 19. In the first section, a

shifting network decodes the edge orientation of the central pixel and accesses

the edge data for the three possible successor (predecessor) loczations, This

edge data is then sent to a comparison network that tests whether the conditions

above have been satisfied. The results are then sent to a PLA containing about

40 minterms, the output of which indicates the successor and whether a fork is

present. The coding for the PLA is shown in 'Figure 20. The gate count is 6 for

40

10265 15

12 11 10 9 B3 7 6 5 4 3 2 1

DIR MAG

EDGE
POINT

Figure 17. Data format for edge point after thinning
and thresholding.

10265 13

t t

(a) FORK, 2 SUCCESSORS THAT (b) FORK, 2 SUCCESSORS THAT ARE
ARE NOT 4-NEIGHBORS 4 NEIGHBORS, BUT WHOSE ORIENTATION

DIFFER BY 2 UNITS (60 DEGREES)

(c) NO I-ORK, 2 POSSIBLE SUCCESSORS (d) FORK, 3 POSSIBLE SUCCESSORS
WHOSE ORIENTATIONS ARE THE SAME.

Figure 18. Some successor configurations illustrating edge linking

rules.

4,1

4r

10265 16

(0 M.A DIR M. DIRV1?

A H. DIR H. DIRj-' I

Nbr M..DIR

B. MIA . MAG':-

Figure~~~~UC 19Hoi o delnig

420

10265 17

<

U U PRIMARY

< FORK SUCC

0 0 0 - - 0 0

0 0 1 - - 0 - - - - - - 0 0

- 1--------------------------0 B
0 1 0 - 0 - - - - - - 0 0

- -0 A

1 0 0 0 - -0 0

1 -0 H

0 1 - 0 0 0 0

- 0 1 0 B

- 1 0 0 A

1 - - 0 - - 0 1 B

I"I

I - - - 0 A

1 0 1 0 - 0 0 0

0 1 0 B

1 - 0 0 H

0 1 H

I

1 1 0 0 0 -0 0

o 1 -0 A

1 0 -0 H

1 - 0 - - 0 - - 1 A

I

1 -- - - - 0 A

I 1 0 0 0 0 0

1 0 0 0 H

o 1 0 0 A
o a 1 0 B
1 0 1 - - - - 0 - 1 B

I

1 1 0 0 - - 0 - 1 A

1 - 1 H

1 -- - - - 0 A

0 1 1 - 0 - 0 1 8

I 06 A

-:3 Q - . = " E < -[1< 1

0 0 1 0 - - 0 A
S 1 1 - - 0 1 B

-1 1 A

0 0 1 1 A

1 10 0 I H

1 -1 0- 0 H

Figure 20. Coding for edge linking PLA.

.3-

the shifting network, 72 for the comparison network, and 170 for the PLA, for

a total of about 250 gates. Formation of the predecessor numbers would take

another similar sized network, bringing the total number of gates to about 500.

D. EDGE TRACING

In this step, the predecessor/successor (PS) elements formed in the pre-

vious operation are linked together. The data format for the PS file is shown

* in Figure 21. Included in this format is a trace bit which indicates whether

*the point has already been collected. The PS elements are linked in thre-±

passes:

0 In the first pass, a raster scan is made of the PS files, in search
of an edge point with no predecessor. Edge tracing begins at these
points, and only the primary successor elements are linked when there
is a fork.

* In the second pass, the edge points that have forks are revisited,
and the secondary successor elements are linked.

0 In the third pass, circular edge segments with no starting or fork
points are linked. This requires scanning the trace file to find
an edge point that has not been collected before, and then tracing
out the circular segment.

It would be undesirable to perform edge tracing in three passes if the operation

is to be done in real time, since the requirements on buffering and speed of

the hardware would then be quite severe. The three passes for the operation

could be reduced if all the start and fork points were identified in a previous

step, and the addresses stored in a list. The start address for tracing an

edge segment could then be provided by this list instead of by scanning the PS

file. This could result in considerable time saving, since typically less than

* 10 percent of an image are edge points, and only a fraction of those are start

-~ and fork points.

The logic for edge tracing is shown in Figure 22. Two 5.5 megabit memories

*are needed for storing the PS files. While edge tracing is being performed on

the edge data in one memory, the other memory is being filled with fresh data.

The "start and fork" list provides the starting address of an edge segment. The

PS information fetched for this point is used to form the edgr linked list, and

* - also to generate the address of the successor to be fetched. The address

44

10265 18

11 10 9 8 7 6 5 4 3 211

LFORK PRED FORK SUCC

BNO PRED I
TRACE NO SUCC

r Figure 21. Predecessor/successor data format.

10265 19

LIS
ADDES

FigreD2ILgiIfrAdgTtacng

1UN45

L ST

modification unit acts as a controller enforcing the three rules above and may

broadcast the address of a new pixel to be fetched, modify the address of the

previous pixel fetched, or decide that a fork is present and broadcast the

* address of the secondary successor that is to be fetched.

*E. GATE COUNT TABULATION

Table 2 summarizes the results of the line finder system, presenting the

* number of gates required for each function. As with the texture system, these

* data will be used later in the study for VLSI partitioning.

44

SECTION 6

SYSTEM INTEGRATION TO HOST PROCESSOR

A principal area of our present work has been to analyze and develop

hardware that will be integrated into a commerciallylavailable test system to

make it portable and extendable. One factor expected to affect the/partition-

ing substantially is the input/output requirements of the system. The data flow

graphs specify the bus widths and the basic data inputs and outputs, bu ute

bandwidths and control requirements cannot be specified until an operatii.

environment has been defined. In the past, when we have fabricated CCD LSI

image processing chips, they have been used in a stand-alone system with dedi-

cated input and output devices. The bandwidths of these devices specified the

bandwidth of the data paths on the chip. But we do not expect some of the

systems being examined in this study to be used in a stand alone system; instead,

we expect them to be used as a peripheral device to a host general-purpose

processor. This then requires that we expand our system study to include the

implications of using a general purpose computer to host the IU systems.

ii"
I

47

REFERENCES

1. R. Nevatia and K.R. Babu, "Linear Feature Extraction and Description,"
published in CUIP, 1980.

2. R. Nevatia and K.R. Babu, "An Edge Detection, Linking and Line Finding
Program," USC IPI Report No. 840, Sept. 1978.

3. C.S. Swigert, "Decoding the Edge Detection Linking and Line Finding
Program of R. Nevatia and R. Babu," HAC Memo ESD 545, Oct. 1979.

4. V.S. Wong, "Description of Edge Finding Process in Thesis by V.S. Wong,"
HAC Memo ESD 303, Aug. 1980.

* 5. S.D. Fouse, "Proposal for Residue Convolver Chip," RAC Memo ESD 242,

July 1980.

6. R. Babu, Private communication.

/ 7. R.O. Duda and P.E. Hart Pattern Classification and Scene Analysis,

(Wiley, 1973, 338-339).

49

_______ ____._

PROGRESS REPORT

October 1980 to April 1981

PMU)Jo ?hAM BLAaK-Nr rIumW

51

SECTION I

INTRODUCTION

[Our previous work 12in developing image understanding architectures has
concentrated on the analysis of the processing functions required for special

* purpose LSI primitives. We have developed about]16 fixed and programmable

primitives for real-time operation.

The work described here represents a significant shift in emphasis and an

increase in capability. First, we have undertaken a detailed design and analysis

of a number of complex processing operations, including line-finding 3 and tex-

ture analysis ~. This work has been carried out specifically with LSI and VLSI

implementation in mind. Hence, issues such as chip and function partitioning,

data flow, local storage, and wordlength are specifically emphasized. The

results of the systems analysis and design for these operations are included in

Section 2. From this work we have been able to configure a fully integrated

real-time processor for each.

Of equal importance, and perhaps greater impact to military systems and

robotics, we have configured, designed, and started to fabricate a VLSI processor

that can form the basis of a fully programmable image understanding system

compatible with commercially available host machines. The architecture itself

uses residue arithmetic5 to provide a highly regular and extendable structure.

These issues are of great importance in the emerging VLSI era where design time

and the ability to amortize the fabrication cost of many processors are essential

elements. The VLSI processor now under development is configured on a single

board with multiple copies of a single custom-built nMAOS chip. Our estimates

indicate that the processor will perform between 50 and 75 percent of the opera-

tions for line finding and texture classification. The modular nature of the

machine can provide essentially variable precision, as discussed in Section 3.
The single custom-built chip has a complexity equivalent to approximately

6,500 transistors. However, with a decrease in design rules from the present

5 im to submicron we can anticipate building a single chip with some 80,000

* transistors and design the whole system around four identical chips.

K A significant advantage of our approach is the compatibility with general

purpose host machines, such as the DEC series, which are widely used in image

53

* analysis and understanding. We have therefore spent considerable effort in

developing a LJNIBUS interface so that the machine can be accessed through the

* host software. With the addition of the local area logic processor, to be

developed in the next phase, we expect to demonstrate a fully programmable real-

time processor.

54

SECTION 2

SYSTEMS ANALYSIS AND DESIGN

The effective exploitation of VLSI technology in image understanding

systems requires that the processors developed be used in as wide a range of

systems as possible. This requires that a wide variety of systems be analyzed

for the purpose of determining commonality. Our approach has been to select

three representative systems to analyze: a line finder, a texture analyzer,

and a segmex..or.G Each system was studied and then a directed graph depicting
the data flow was produced . The directed graphs had nodes that were function-

ally complex, so the next step was to perform a logic design for the systems to

determine the complexity of the nodes and of the systems. The logic design

was done for the line-finder and the texture analyzer systems. For details of

each design, see USCIPI Report No. 990.2 A brief summary of the results for
each system are presented below.

The line-finder system breaks down into four major functions: edge detec-

tion, edge thinning, edge linking, and edge tracing.

A design was generated for each of these functions and Table I presents

the number of gates each required. Similarly, the texture analysis system

divides into five major functions: small window convolution (5 x 5), small

window statistical calculation, scaling, large window statistical calculation,

linear transformation; Table 2 presents the gate count for each system.

From the results of the directed graph analysis and the logic design, it

is obvious that the function that is common to all three systems, and the most

complex when measured by the number of gates, is the small window (5 x 5)

convolution. This supports our decision to build a programmable 5 x 5 local-

area processor as the basic VLSI module.

.55

Table 1. Gate Count for Line Finder System

Edge Detection 178K

Thinning 190 Gates

Edge Linking 500

Edge Tracing 12 Mbit Memory +5K Logic Gates

Table 2. Gate Count for Texture Classification
System

5 Line Kernel Generation 15K Gates

5 x 5 Convolution 27K GatesJChannel

5 x 5 Variance 1OK Gates

Normalization iK/Channel

Large Window Statistical 8.25K/Channel
Calculation

Transform (M Input 2.1K'M/Output Channel
Channels)

I

f5

SECTION 3

A RESIDUE BASED IMAGE PROCESSOR

The work described in Section 2 motivated the design of a processor which

could perform the computationally intensive low-level operations for each of the

three systems investigated. In addition to fulfilling the requirements of the

three systems, we also wanted to select an architecture which could be extended

to take advantage of the VLSI design and processing capabilities which are

currently being developed. The architecture we selected is based on the technique

of residue arithmetic.

A. PROCESSOR DESCRIPTION-

We implemented our local area processor in residue arithmetic to take

advantage of modularity, and hence ease of design, within the VLSI chip, and

extenidability to handle arbitrary dynamic range and accuracy. The technique

relies on the conversion, prior to computation, of all the data to relatively

prime bases (we chose 31, 29, 23, and 19) and the subsequent decoding of the

processed data back to binary numbers. If this overhead is accepted then the

arithmetic itself is reduced, both in complexity and in required dynamic range.

This enables us to use look-up tables-, which in our case are prograzmnable RA~4s,

to perform the necessary arithmetic. Regularity, ease of 'VLSI design, and

function density are significant advantages. Thus, this approach is ideal for

VLSI implementation.

A block diagram of a general residue processor is shown in Figure 1. Some

of the advantages (e.g., modularity) and disadvantages (encoding, etc.) of this

technique are clearly visible in this representation. The encoding and decoding,

when compared to a binary processor, are overhead functions and can be the major

disadvantage of a residue processor. However, this overhead cost can be reduced

if enough computations can be performed while in the residue representation, and

hence the encoding and decoding can be amortized over a large computation base.

The clear advantage of this type of processor is its natural parallelism. Each

parallel computation channel is independent, requiring no communication with its

neighborib until the conversion from the residue representation to a binary

representation is performed.

57

10265-1

ENCODER PROCESSOR
BASE BASE 82B 1

BASE R -- PROCESSOR
BASE BASE BN 1

INPUT 0RESIDUE
DATA DECODER

B A S E R I -- P R O C E SS O R
BASE BASE BN

ENCODER PROCESSOR
BASE BASE B1BN

I

Figure 1. General structure for residue processor.

58

4 i

B. KERNEL GENERATION AND ENCODING

Typically, the input to an image processor is a string of 8-bit data values

generated by a raster scan of the image, in which case we must include in the

processor the means for generating the two-dimensional kernel. This kernel

generation function is most easily accomplished using a series of shift registers.

For a five line kernel, four shift registers, each one containing as many ele-

* ments as there are pixels in a line, are required to generate five adjacent lines

of video. For our particular application the shift registers are 8 bits wide

and 5].2 elements long.

Before the input data can be processed by a residue processor it must be

converted from a binary representation to a residue representation. This con-

version requires that we calculate

(X mod B1, X mod B2, ... , X mod Rn),

where X is the value of the input data and Bi is the ith base. For our case,

since we operate on a 5 x 5 kernel, we must perform this calculation on the input

for each of 5 lines of video and for each of 4 processors (equivalent to the

four bases). The simplest way to perform this calculation for a general set of

bases is to use Read Only Memories (ROMs). By connecting the input data to the

address lines of the ROM and looking at the ROM's data lines for the output, a

look-up function is performed. For our particular processor, which will support

* an 8-bit input dynamic range and bases which can be encoded in 5 bits or less,

* the size of an encoding ROM is 256 x 5 bits. Figure 2 shows the block diagram

for the kernel generation and encoding portion of a 4 base 5 line processor.

Each of the 5 ROMs for each base are programmed identically.

An alternative way to perform these two functions would be to encode before

*the kernel is generated. The major drawback of this technique is that the

memory requirements are much greater for the kernel generation process. For

the system we are currently constructing, each line delay would need to be 20 bits

wide, as opposed to 8 bits wide for the method we chose.

59

5
Rom

INPUT DAT

LINE DELA

8 RUM

LINE~ 0EA

8U

ROM

Figure 2. Kernel generator encoding
for 5x5 processor.

'60

C. A PROGRAMMABLE RESIDUE COMPUTATION LSI CIRCUIT

* The actual computations on the image data will be performed by a custom

LSI circuit which is currently being processed at the Hughes Carlsbad Research

Center. The circuit will process a 5 x 1 kernel and is capable of performing

computations of the form

y = fi(

where y is the output value, x. are the five elements in the kernel, and f,
1.

represents polynomial functions of a single variable.

A functional block diagram of the circuit is shown in Figure 3. The word

size for this is 5 bits, which limits the prime bases used to a value of 32 or

less. The circuit is designed to accept a 5-bit input word which is clocked into

a 5 element shift register. The contents of each register element is then

shifted to the next register. The 5-bit data in each of the shift register ele-

ments is used to address a look-up table, which is a 32 x 5 Random Access

Memory (RAM). This look-up operation performs a unary operation, such as a

multiplication by a constant or a squaring operation. The outputs of the 5 RAMS

are then summed modularly to produce a 5-bit output, the base of the modular

addition being programmable by external control of the circuit. Since the look-up

tables which perform the unary operation are composed of RAMs, the circuit can

be programmed for many different computations, such as different weights for a

convolution or different powers of a number for a statistical calculation.

A detailed schematic of the circuit is shown in Figure 4. In addition to

having 5 bits of input data and 5 bits of output data, an additional set of data

lines is included in this design. These data lines, which are bi-directional,

serve a multipurpose role for control and testing. When used as input data lines

they can be used to program the base of the modular addition and to program any

of the 5 look-up tables. When used as output data lines they can read the

look-up tables to verify the operation of the circuit.
This circuit is being fabricated using the nMOS technology and has been

designed to accept a 10 MHz data rate. To achieve this data rate pipeline

* techniques were used; the resulting latency for this circuit is 7 clock cycles.

The circuit will be packaged in a 28-pin DIP. Figure 5 is a photograph of the

layout of the chip.

* 61

10265-4
IN p ciruit

5RG 5 RAM "5

RE 5 RAM 5 OUT

REG RAM 5

55

5 A 5

OUT 5 RA 5

DATA' 5 R.A. = RESIDUE ADDER

Figure 3. A functional block diagram for 5xl residue processor circuit.

62

PDO
10697-2

FN VDD AD

PD4 ADDI R

EN LATCH A4

00 '0 Do M so
BUFFER,
DWYER

A 00, 04 14 04 d4 ew
00

so

U, 0, A/W , DD 4 04 54 A 57

RAM I104---/
N

00 AD UDO XO I

UA
A4 004 X4 Y4 02 R A

AD :0
61 02 1 DO

RAM 1 1104 IN A4 4

AD GDO X13 RCO

6
A4 004 X4 4 AC4

01 02 'DO 'a

*11AM .4
71 IN D2 >- R AX0 yo

XIN

.1 j AD X4 Y4 0,
4 Y4y 02 R A

A4 4

R A
A4 R4_D 0

0, 02 L
DO

AD .. V

R A

RC.

4 RA FRAM 4 SA RA
D4 EN A4 R,4 02 .4

AD ODO XO YO so AD

Y.

4

ACO ---. Ooo

A4 004 1 . Y4 A4

XO YO
RC,

so 0 00 so

so so BUFFERD D,01 02 'DO 0, 0 'Oft'v().A/W 04 4 S4
y LID RAM 5 64 S4 EN

ID4 Ell n4

AD ODO X0 YO I

A AL 0 D. 44

JkJX4 14H

S6

j 0 - yo.

Figure 4. Schematic of 5xl residue circuit

63

10667-3

Isi

Figure 5. Photograph of CRC 18± layout.

64

To utilize this circuit (with a 5 x 1 kernel) in a 5 x 5 local area

processor, multiple copies of the circuit are used, as well as additional

logic to combine the outputs of the individual circuits. For each base, 5 of

these circuits are used, one for each line of the kernel. In addition, four

1,024 x 5-bit ROMs are used to sum the outputs of the 5 circuits. ROMs are used

instead of adders because the additions must be done modularly. Figure 6 shows

the block diagram of the processor, including the encoding and computation

portions.

D. DECODING

The last portion of the processor is concerned with the conversion from the

residue representation to a binary representation. This conversion could

certainly be done the same way as the encoding (by table look-up), but there is

a severe problem with that approach. For our particular system, to convert

four 5-bit values, the decoder would require a memory 1 million elements wide,

with each element being 17 bits deep. This table is certainly attainable, but

the approach is not extendable. If an extra base is required so that five 5-bit

values need to be converted, the memory requirements increase to 33 million

*elements, each being greater than 20 bits deep.

There are two conversion methods that do not require these large memories.

One is based on the Chinese Remainder Theorem and the other is based on a mixed

radix representation. (For a complete discussion, refer to Ref. 9). This

report will focus only on the particular implementations of these techniques

and the rationale for selecting one over the other.

To be able to reasonably discuss either of the two conversion methods some

notation must be introduced. If B is the base vector whose elements are the

bases used for the computations, or

B = (b l,b 2 , ... , bk),

and R is a scalar whose value is equal to the dynamic range of the processor,

which is given by

R - bl*b2* * ebk

651 2 * k'

.4

65

10,597-4

ROM CRC
181

ROM

CRC
ROM 181

5
CRC OUTPUT

ROM 181 DE LAY
ROM

5 CHC 5
ROM 181

BASE 1
5 ROM DEL Y

ROM CRC
181

5-

181

ROM CRC
INPUT DATA 8 181 R

Z
5

ROM CRC OUTPUT
181 DELAY

ROM
5

ROM CRC
5

8 181 BASE 2
ELINE qDELAY ROM DELAY

5
ROM FCRC, __E

TO DECODER --- w

5 CRC

8 ROM 181 ROM
LINE DELAY 5 CRC 7

ROM 181 R

5CRC OUTPUT

LINE DELAY 8 ROM 181 DELAY ROM I--,- -
ROM 5 CRC

5
181 ROM DELAY BASE3

5 CRC

181

5 C
ROM

181 ROM

- 5 CIRCROM 181 R

ROM 5 CRC OUTPUT
181 DELAY ROM

ROM CPC I I
181 ROM DELAY BASE4

ROM 5 CRC
181

ENCODER RESIDUE
ROMS CHIP

Figure 6. Structure of 5x5 processor utilizing 5xl processor circuits.

66

and x is the value we wish to encode into the residue representation, then

RX, the vector whose elements are the data values for each of the computation

channels, is given by

RX = (rxrx2, rxk),

where

rx. = x MOD b., i =1 to k.
1 1

The Chinese Remainder conversion process is based on the following property. If

RS = (rx 1,rx2 ,rx3 ,rx4),

then

RX = [(rxl,rx 2 ,0,O) + (0,0,rx3 rx4] MOD r.

Figure 7 shows a system which performs this conversion and which requires

only two blocks of memory 1,024 elements wide with two adders. The adders need

only be as large as the accuracy required of the system. Typically, for image

processing systems, the output dynamic range and the input dyanamic range are

equal, and thus the adder complexity can be relatively small.

The second conversion scheme considered is based on the mixed radix method,

but is simplified by the fact that the output dynamic range can be approximately

8 bits. The method can be explained by imagining an iterative process where at

every iteration the smallest base is eliminated by dividing the data value by

that base value. Dividing essentially reduces the dynamic range of the value

and thus eliminates the need for the extra base. Of course, since we are limited

to a strictly integer system, we must make sure that the value is evenly

divisible by the smallest base. This can be done by rounding up or down so that

the element in the residue vector for that base is zero. Figure 8 shows an

architecture for a 4 base system that performs this mixed radix-like conversion.

67

4

5 bit/bae)

688

I __ ___ ____ ___-.- ~-~17

1069 7-5

8

1024 x 8
ROM

5 5

04x51024 x 5
ROMRM

BASE E BAS 1AE

Figure 8. Mixed radix based residue decoder (4 base
system, 5 bits/base).

69

At tfle bottom level of this tree structure the fourth base is eliminated. At

the next highest level of the tree the third base is eliminated. Finally, we

are left with two base values which can be decoded with a simple look-up table.

This system has been simulated and the computer programs exist which can gener-

ate the contents of the ROMs for this conversion process for an arbitrary set

of bases.

We chose the mixed radix-based conversion process to be implemented for

our processor for two reasons. First, the method does not require any logic

other than ROMs. This tends to make it more flexible and reliable. Second, the

method appears to be easily extended to more bases by simply extending the

decoding tree. Extending the Chinese Remainder based process would require either

* larger ROMs or more adders, either way being a less attractive method than the

mixed radix type conversion.

E. PROGRAMMING AND CONTROL

A major problem in the fabrication of this processor is gaining access to

each of the 20 custom residue chips for the purpose of programming the look-up

tables. Each chip has three address lines to select one of 5 RAM structures,

a read/write line, the 5 bidirectional programming data lines, and a control

line for the data line drivers. These 10 control lines must be brought out for

each of the 20 custom chips for a total of 200 control lines for the purpose of

programming. However, by bussing lines where possible and by using a peripheral

interface chip, the Intel 8255, the number of lines that are actually brought

* out of the processor is reduced to 16.

Figure 9 shows the structure that will be used to program the processor.

The three address lines and the bus driver control lines are brought from each

custom chip to an 8255. One 8255 is able to control 5 of the custom chips,

since the 8255 has 24 lines available through three 8-bit ports. Thus, four

8255s are required to control all 20 of the custom chips. In addition, the 5

program data lines and the read/write line are bussed between each of the chips

and these 6 lines are brought to a fifth 8255. The 8 input data lines of the

8255s are bussed together, as well as the 2-bit port select address lines.

Finally, we bring out each of the 5 chip select lines to a binary decoder,

allowing selection of a single 8255 using three control lines.

70

10697-6

PORT D 0:2

PORT I2 e

PORTO

- * -, DATA A0, A1

-. , JBITS
10:7

Figure 9. Structure for programming and

control of residue processor.

71

825

To use this structure to program a given RAM element in the processor

requires the following steps. Initially, the fifth 8255 is selected and the

data to be programmed are written to the port containing the 5 program data

lines. Next, the 8255 that controls the chip that the desired RAM element is

on is selected, and the code to select the desired RAM structure is written to

the proper port. Next, the address of the desired RAM element is provided on

* the input data lines of the processor, and then the address data is shifted so

* that it is addressing the proper RAM structure. Finally, the write data line

* is strobed to complete the programming sequence. This sequence can be accom-

plished by three 16-bit data transfers. For a processor using 31, 29, 23, and

I 19 as the modular bases, a total of 2,550 RAM elements need to be programmed.

Thus, if three word transfers are required for each RAM element, a total of

7,650 word transfers are required to completely program the processor.

The processor, which involves all of the functions described above, is

currently being fabricated. The majority of the electronics will be on a single

wirewrap board, but the line delays will be in a separate box. A picture

illustrating the progress on the wiring of the board is shown in Figure 10.

F. A VLSI VERSION OF A RESIDUE COMPUTATION CHIP

Even though the custom chip is performing the bulk of the computations,

there is still a fair amount of extra circuitry required. Most of the extra

* circuitry is necessary because we are using a custom circuit based on a 5 x 1

kernel. The next step then, once this processor is tested and demonstrated, is

* to develop a 5 x 5 residue custom circuit and fabricate a processor which would

* utilize these VLSI circuits.

Ideally, the 5 x 5 circuit should include the circuitry for generating the

1 5-line kernel. This would mean that there would be 5 bits for input and 5 bits

for output. If the kernel generation is performed off of the chip, 25 lines

*f or input would be required, or at least a high speed multiplexer would need

* to be on the chip. On the other hand, if a simple line delay is used to gener-

ate the f-line kernel, the circuit would be too inflexible, since it may not

be suited to certain applications. This can be avoided by augmenting the shift

*register with logic to control the clocking. By multiple clocking, the shift

* registers can be made to delay any length up to the maximum length. in other

words, we would construct an elastic delay line.

72

10697-2

Figure 10. Photograph of processor wirewrap board.

73

* Figure 11 shows a block diagram for the data flow of a 5 x 5 residue circuit.

*This circuit includes four delay lines, probably 512 elements long, 25 registers

for generating the 5 x 5 window, 25 RAM structures, 24 modular adders, and some

delay stages. In addition, programming, control, and testing of this circuit

must be considered. A great deal can be learned about these issues by using the

* processor currently being fabricated.

Both the current chip, the 5 x 1, and the next chip, the 5 x 5, have been

sized to get a quantitative measure of their complexity. The CRC 181 has a

device count of approximately 6,500, of which the RAM portions of the circuit

take up 4,500 devices. For the 5 x 5 custom circuit the device count will

increase to 80,000. One of the reasons for the high device count is the addi-

tion of the line delays, which account for 50,000 devices (for static memory

* cells). The total number of devices for random logic is about 7,000, which is

low considering that the circuit will have a throughput of 500 million operations

per second.

As stated, going to a 5 x 5 circuit will greatly reduce the extra circuitry

required to construct a 5 x 5 processor. Figure 12 shows a block diagram of a

system utilizing a 5 x 5 circuit. With the VLSI circuit, the package count

for the data flow portion of the processor will be only 14. This is compared to

a package count in excess of one hundred for the current design. The power and

size will be greatly reduced, thereby permitting the processor and the DEC

UNIBUS interface to be put on a single card.

*G. FUNCTIONAL CAPABILITIES

Although the primary motivation for developing this processor was a system

that would require 5 x 5 convolutions, the processor is capable of performing

a wider range of computations. The reason for this flexibility is due to the

fact that we used a look-up table to perform a unary operation and that the

table is completely programmable. The general form of the computation that can

be performed by the processor is

y f f(xi)

ADRDT 10265-2

IMPUT REG 1IA

AADD

TIIN I REG 10 RAM

E ADD

y 75

10697-9

RESIDUE0 Vx5 COMPUTATION

PRORA

- x5 -,w RESIDUE X

ROM COMPUTATIONTROlCHIP
VIDEO 87

• i INPUT" 5x5 I

- 5RESIDUE -7L.. x5 7- 5
RM COMPUTATION RO|O

CHIP -1L
1 2

x5 d-, RESIDUE -- 7 - 5x5
R IOM11 COMPUTATION -4 O/O

L . I CHIP

T10

PRO GRAM

CONTROL

Figure 12. Residue Processor based on 5x5 custom chip.

76

where y is the output, x is the 25 elements in the 5 x 5 kerckel, andf
represents the polynomial functions of a single variable. Each f is completely

i*i

sets of the f.i to be identical to zero, we can program the processor to perform

point transforms, 1-D transforms of any size up to 5 x 1, and 2-D transforms

of any size up to 5 x 5. Table 3 lists some of the functions that can be

performed by this processor.

H. UNIBUS INTERFACE

The processor, as mentioned before, is designed to accept data at 100 nsec

intervals. The reason for this high speed design is to allow real-time stand

alone operation. This means, however, that when the processor is used as a

peripheral device attached to a general purpose computer, the data transfer

will be limited by the memory cycle of the general purpose computer and not by

the processor speed. Therefore, to get optimal use of the processor, we need

the fastest type of transfer available between the processor and the main memory,

where the data to be processed will reside. The Direct Memory Access (DMA) type

of transfer is the fastest type of transfer that a general purpose computer can

support, since it does not require processor intervention. For DEC UNIBUS

applications, the fastest data rate one could expect is approximately I MHz.

The type of interface we design should then be able to provide a DMA

transfer capability for both the programming data and the image data. For

either type of transfer, it is essential that the interface be controlled to

select the memory location from which the data are to be transferred and to

select the number of words to transfer. For program data transfers the inter-

face will only be required to transfer one way at any time. The transfer will

be to the processor while in a program mode, and from the processor while in a

4 test mode. For image data transfers the interface must be able to transfer

data both ways, for input and output. The simplest alternative to handle this

bi-directional transfer of data (from a hardware point of view) is to transfer

the output data to the same memory location from which the input data came,

i.e; write the output image over the input image.

4 ! 77

Table 3. Functional Capabilities of RADIUS

Point Operations

Polynominal Functions

Contrast Enhancement

1 - Dimensional Operations

Integer Coefficient Transforms

Polynominal Functions

2 -Dimensional Operations

Edge Enhancement

Statistical Differencing

Low Pass/High Pass Filtering

Shape Moment Calculations

Statistical Moment Calculations

Integer Coefficient Transforms

Texture Analysis

DEC devices exist that can provide the DMA transfer capability, as well as

provide several control lines to the peripheral device to allow multiple trans-

fer modes. One such device is the DEC DR11B UNIBUS parallel interface. Our

plan is to use this device to provide the DMA capability and to design a custom

interface to permit the specific transfer modes. The arrangement suggested is

shown in Figure 13.

The custom interface will need to interpret the control lines from the

DR11B and decide if the transfer is for program data or image data. If it is

program data the interface will simply pass the data to the 16 program data lines.

'UI If it is an image data transfer, the custom interface is more complex. Since

it is a 16-bit transfer, the data will contain two pixels. Following the

transfer, the interface must first pass one byte to the input data lines and

then the next byte. Simultaneously, the interface must load the first output

image data into one byte of the 16-bit output data register, and then load the

next output data into the other byte of that register. Finally, the output data

78
.4

10697- 10

11/3*1 Figure ~~~~I.3. ~ CPcaU so UNBSpoe oritfa.

MEM79

-4o

registers' contents are transferred to the DR11B which writes it to main memory.

*A preliminary schematic of a system that can perform these types of transfers

* is shown in Figure 14.

80

UNIBUS INTERFACE PROCESSOR INTERFACE

ADDES

FigureE14 BUFstRcueo NBS oesritrae

DRVR DRS0:7RGSE
WODTMIGCT

COUNTBANREITR1OTO

SECTION 4

SUMMARY

We have described the work undertaken to design VLSI processors for these

widely used systems: line-finding, texture classification, and segmentation.

From this we believe we can, if required, build the necessary hardware. How-

ever, of greater impact, we have identified and started to build a fully soft-

ware programmable low-level processor for 5 x 5 operations. The circuitry

described relies on a special purpose VLSI chip with 6,500 components. Using

this, and the interface designed to hook the processor to commercial general

purpose machines, most low-level arithmetic operations over a 5 x 5 kernel can

be performed.

I PIOI~flG PAGIR BI nOFiA~w

83
.4

REFERENCES

1. G.R. Nudd, "Image Understanding Architectures." National Computer
Conference, May 1980, Anaheim, CA. AFIPS Conf. Proc 49, 377-390.

2. S.D. Fouse, G.R. Nudd, and P.A. Nygaard, "Implementation of Image
Pre-processing Functions Using CCD LSI Circuits". Proc. Society
Photo-Optical and Instrumentation Engr. 225, 118-130, Spie Conf.

April 1980 Washington, D.C.

3. R. Nevatia and K.R. Babu, "An Edge Detection, Linking, and Line Finding
Program," USCIPI Report No. 840, Sept. 1978.

4. K.I. Laws, "Textured Image Segmentation," Ph.D. Thesis, USC, Electrical
Engineering Dept., January, 1980.

5. N. Szabo and R. Tanaka, Residue Arithmetic and its Applications to
Computer Technology (McGraw-Hill, New York, NY, 1967).

6. R. Ohlander, K. Price, D. Raj Reddy, "Picture Segmentation Using a
Recursive Region Splitting Method," Computer Graphics and Image
Processing, 1978.

7. S.D. Fouse, G.R. Nudd, V.S. Wong, "Application of LSI and VLSI to
Image Understanding Architectures," Proceedings Image Understanding
Workshop, April, 1980.

8. S.D. Fouse, V.S. Wong, and G.R. Nudd, "Advanced Image Understanding
Using LSI and VLSI," USCIPI Report 990, September 1980, pp. 164-204.

9. A. Huang, "Number Theoretic Processors: A C Array Architecture,"
Ph.D. Thesis, Stanford, October 1980.

85

4 o

PROGRESS REPORT

April 1981 to October 1981

87

SECTION I.

INTRODUCT ION

It is generally understood that image processing systems have very large

computational throughput requirements. (Typically greater than 25 million

operations per frame.) If the system is to operate in real-time (30 frames

per second [FPS]), then the required throughput is of the order of 1 billion

operations per second. Obviously, a special purpose processor is required to

achieve real-time performance, and because of the extreme computational require-

ments it is clear that Image Understanding systems can benefit greatly from the

VLSI technologies. To be able to utilize VLSI, however, one must be able to

overcome the anticipated high costs of design and test. One way to reduce the

cost is to develop a processor which is very modular and can be described in

a heirarchical manner, which is how the modern computer design tools will handle

the complexity of a VLSI circuit. Another way to reduce the costs is to use

regular structures on the chip, such as memory. This will reduce design costs

as well as the cost of testing. Finally, the most significant way to handle the

Cost problem is to make a processor which has application to a wide range of

systems. This will allow the cost of the chip to be amortized over a large user

base.

For the past year we have been developing an LSI prototype of a VLSI

processor which performs arithmetic operations over a sliding 5 x 5 window of an

image. The RADIUS (Residue Arithmetic based Digital Image Understanding System)

processor was described in the previous USC semiannual report 1. This pro-
cessor has several features that make it very well suited to a VLSI implementa-

tion, including modularity, extensive use of memory, and application to a large

number of image understanding systems currently being developed.

As indicated by the acronym, the processor utilizes the technique of

residue arithmetic2 to perform the computations. The processor converts the

incoming binary image data into a residue representation by calculating the MOD

or remainder function over multiple, relatively prime bases. The data is then

processed in parallel independent channels, one for each base, with identical

operations being performed for each base. In each channel the data is processed

using modular arithmetic in the respective base. Finally, the data from each

base channel are combined to form a binary result.

89 mIEA AG LN-iOT F~IM)

Our prototype processor uses commercially available read-only-memories

(ROMs) for the conversions from binary to residue and residue to binary. For

the computation portion of the processor we have developed an LSI nMOS circuit

which can perform 5 x I local area computations for a single 5-bit base (<32).

The processor, which uses 20 of these custom circuits (4 bases, 5 lines per

base) is currently programmed to process data in the bases 31, 29, 23, and 19

and can accept 8-bit binary data at a 10 MHz rate.

This report describes the critical aspects of the development of RADIUS

and the progress that has been made. In addition, we will describe the status

of the essential related projects we have been working on. These include:

* RADIUS-UNIBUS interface

* Applications of RADIUS

* Design Automation

a A Local Area Logic Processor.

90

SECTION 2F PROGRESS ON RADIUS DEVELOPMENT

The RADIUS development work can be divided into three areas:

0 Development of residue custom LSI circuit

0 Fabrication of processor board

0 System integration.

Each of these are critical in that the system will not operate without the

successful completion of the work in all three areas. During the last six

months we have made considerable contributions in all three areas.

The development of the residue custom circuit has significantly progressed

in the past six months. In June, 1981, the first parts were packaged and tested.

Software was developed for testing all of the major components of the circuit,

including the input shift registers, RAM's, base latches, and modular adders.

A problem was detected with the adders and soon diagnosed to be a design error.

At this point we started a re-design of the circuit to correct the error, as well

as continuing to thoroughly test out the circuit for functional correctness and

operating speed. The chip was run at 2.5 MHz with very clean waveforms. The

limit on the speed was due to the bandwidth of the clock generator and clock

drivers. The new masks were produced, and the processing of the new lot is due

to be completed by the middle of October.

The actual processor consists of a 12 x 14 in. wire-wrap board. The

majority of the wire-wrap was complete prior to the arrival of the first lot

of chips. The board was tested without the chips, and it was verified that all

of the data paths were correct, and that the encoder, adder, and decoder RGMs

were correct. When the chips did arrive, they were tested in the processor

itself. This provided the benefit of developing the processor programming

software simultaneously with the test software. The current status of the

processer board is that it is 95 percent complete, with only the fine tuning of

the clocks remaining to be done. This will be accomplished when the second

lot of chips arrive.

91

The last area of work instrumental in the development of RADIUS is the

integration of the custom chip, processor board, and external control. This

work has proceeded in conjunction with the other two areas of effort, since

all of the testing was accomplished through the use of the external control.

The external control consists of a microcomputer with a 24-bit parallel I/0

card. The programs that were written for test and programming have all been

written in assembly code and are executed on the microcomputer. This work is

essentially complete except for confirming that the system is compatible with

the new chips.

*9

192

4

[~

SECTION 3

RADIUS-UNIBUS INTERFACE

The RADIUS processor is designed to accept data at 100 nsec intervals, which

is fast engugh for real-time stand alcne operation. This means, however, that

when the processor is used as a peripheral device attached to a general purpose

computer, the data transfer will be limited by the memory cycle of the general

purpose computer and not by the processor speed. The Hughes Image Understanding

Installation is based on a PDP 11/34, with a so-called Direct Memory Access

module, type DRIlB, providing the fastest access. The PDP 11/34 is able to

communicate with the computer memory along the UNIBUS lines without intervention

by the CPU. About 500,000 words per second can be transferred in this way,

which translates to a data rate of I Mbyte/sec at the RADIUS processor.

The PDP 11/34 uses a page-addressed memory structure, each page being

32K words in length. In order to store a complete image it is necessary to

cross page boundaries by a technique known as dynamic region allocation. Soft-

ware has been written to :_ -his, which stores a 256 x 256 x 8 bit image buffer

ready for processing. Our displ.v unit, a COMTAL, can store two 512 x 512 x 8

bit images, each of whicit ±- 3plit ij'-f four quadrants giving 8 additional image

buffers. It is anticipat- that 9 buffcrs in all should be adequate for the

development of most of jr L. ge V'nd--.tanding algorithms.

The dynamic region all- -Lion an(. direct memory access techniques will pro-

vide a string of 8-bit values, oiginally generated by a raster scan of the

image. We will include in the processoi interface the means for generating the

two dimensional kernel. This kernel generation function is most easily

envisioned as a series of shift registers. For a 5 line kernel, four shift

registers are required, each one containing as many elements as there are pixels

on a line. However, since the system is being designed with variable line

lengths, a variable length shift register would be difficult to implement. For

this and other reasons (including component availability, price, performance,

reliability, etc.) Hughes has developed a line delay system using random access

memory. A system of address counters and crossbar switches is used to both load

and retrieve the data on a line by line basis, and also to access the 5 x 5

kernel itself.

93

.4.

Another design issue in the computer-to-RADIUS processor interface is that

* of gaining access to the look-up tables carried in each of the 20 custom residue

chips. This could be done either with a separate interface module to the

* PDP 11/34 or by using some of the existing control lines on the DR1IB DMA

module. We will take the latter course of action to avoid unnecessary clutter

on Lhe PDP 11134 backplane. This will, however, necessitate some extra switching

on the interface module so that data from the DR11B can be routed to either the

four line delay or to the look-up tables. For reasons described below, we

*indend to pass information to and from the RADIUS processor through look-up

tables composed of 256 x 8 bit RAMS. This will make it possible to apply non-

linear operations on a pixel by pixel basis, and will also control the dynamic

range of signals fed to the RADIUS processor.

94

SECTION 4

APPLICATIONS OF RADIUS

The primary motivation for developing this processor was to do 5 x 5

convolutions for such applications as edge enhancement, statistical differenc-

ing, low/high pass filtering, statistical moment calculations, integer

* coefficient transforms, and texture analysis. However, the processor is capable

of performing a much wider range of computations. The reason for this flexi-

bility is due to the fact that we used a look-up table to perform a unary opera-

* tion, and that the table is completely programmable. The general form of the

computation that can be performed by the processor is

I(i iO

where y is the output, x * is the 25 elements in the 5 x 5 kernel, andf
represents any allowable residue arithmetic computations.

The exact nature of what constitutes an "allowable residue arithmetic com-

putation" is an interesting question, and we are performing ongoing studies to

* seek a solution. Basically, the integer operations of addition, subtraction,

and multiplication are allowed, but division is not, since the result of a

division is not, in general, an integer. In the residue arithmetic as imple-

mented on the RADIUS machine, any number is uniquely represented by an array of

four residues in bases 19, 23, 29, and 31. If any addition, subtraction, or

multiplication operation is performed on all four residues (modulo the base in

question), the result is equivalent to performing the same operation on the

input number. The largest number that can be represented, M, is given by the

.1 product of the bases, in this case 392,863. Overflow cannot occur in any one

base since the answer is always taken modulo the base, but it is possible for

the output number to exceed M. In this case, the computed result appears

modulo M, giving a 'wrap around' effect similar to that in binary arithmetic.

95

However, there is no convenient way to determine that this overflow has occurred,

necessitating considerable care in developing an algorithm to generate f i(x i)
(It is imperative that the final result of the algorithm does not exceed M.)

Nevertheless, an advantage of residue arithmetic is that intermediate values

* in a calculation can be arbitrarily high, and the algorithm can4 be arbitrarily

complex. This arbitrary complexity is a very powerful feature of residue/

arithmetic, and it arises because the results are stored in a look-up table.

However, because much computer time is needed to generate the tables themselves,

the computations are still performed on image data at the full 10 MHz rate.

Since the RADIUS processor can evaluate any arbitrary integer coefficient

polynomial and many useful operations can be approximated by polynomial func-

tions, we have decided to investigate this approach. The polynomial may be of

arbitrarily high order with arbitrarily large coefficients, although the

* coefficients must be integer. In particular, no coefficient can be less than

one, so that in a high order term a large input number raised to a high power

may exceed the maximum, M. This is not a problem if other terms in the poly-

nomial are sufficiently negative to reduce the overall result to less than M

(we are working on polynomial curve-fitting techniques to achieve this).

Figure 1 shows an approximation to the function, y = a -Ix, useful as part of the

Sobel operator. As may be seen, an accurate fit is obtained with a cubic

polynomial everywhere except at the origin, where it is possible to improve the

fit, if necessary, by adjusting the polynomial coefficients. There is a tradeoff

between accuracy of the fit and the maximum allowable input value, but this is

rapidly improving as we improve our curve fitting procedure. The preliminary

results shown in Figure 1 were produced simply by performing a least squares

fit and then rounding the coefficients to the nearest integer value, but this

is far from being the optimal technique. It is possible to fit a polynomial

curve to practically any desired function, so that such operations as contrast

enhancement, thresholding, etc., become possible. Furthermore, it is possible

to perform a different function for each element of the kernel, so that the

RADIUS processor is expected to open a new area in convolution-type processing

algorithms.

96

11274-21

400

POLYNOMIAL
APPROX IMATION

320

- -~ 240
C

1
)

160

* 80

0 5 10 15 20 25 30

* I x

Figure 1. Scaling factor chosen to utilize dynamic range of a residue

processor.

97

I SECTION 5

DESIGN AUTOMATION

This work is not directly part of the I.U. effort but will be of great

benefit in terms of cost and speed of our designs. We have set ourselves the

goal of investigating and implementing a design automation system capable of

designing large VLSI chips in an efficient and reliable manner. If the pre-

dicted downscaling of devices and increase of chip density materializes in the

near future, we will need much better design tools to organize and design VLSI

* chip systems, since we see that design productivity and system complexity will

be the bottlenecks in implementing VLSI systems.

To help us develop these tools for VLSI design, we have at our disposal

* several computer systems and devices. These include a VAX 111780, where we

are developing most of our software, an AVERA IC designer, which is a complete

IC design system in itself, a PDP 11/34, whichis used as a controller, and

several plotters and graphics terminals. We also have access to an Amdahl 470

processor and a PDP 10 computer for running simulations and for program

development.

The AVERA unit is a self-contained IC design system, including layout

graphics and symbolic representation of designs. It includes dual floppy disks

where designs and system programs are kept, a 17 in. black and white CRT, a

-keyboard, and digitizing tablet. The capabilities include symbolic recognition

of commands and up to 64 levels of design representations. The design output

can be in either CALMA GDS II or CIF format.

We are also investigating the design automation approaches being pursued

* at the Universities. One example is a STICKS-type design package called

CABBAGE, developed at UC Berkeley. It enables a designer to use symbolic

*1 representations to formulate his designs, and as a final step, compacts the

.4 design to minimum geometry while ob,;erving the programmed design rules. Another

approach being taken at Caltech and MIT is to specify the designs in a structured

* and algorithmic way. Standard VLSI components such as PLAs and ALUs can be

designed in this way with alterable parameters controlling the size and con-

-, figuration of the component. Other groups were looked at during the testing and

99

pa B1A-T 3U

simulation of complex VLSI system designs. In order to design error-free

systems, it is necessary to be able to simulate complex chip designs. Research

on this is being done at MIT, where a program for logic simulation called

MOSSIM has also been developed.

100i00 ,.

SECT~ION 6

A LOCAL AREA LOGIC PROCESSOR

RADIUS has wide application to image understanding and can perform the vast

majority of arithmetic operations required. There is, however, a need for

additional high-speed processing at the pixel level for operations such as those

requiring logical decisions. Examples of the need for this type of processing

are operations such as edge thinning, edge tracing, and region formation.

Recognizing the need for this type of high speed processing, we are working to

* define and develop a logic processor to complement RADIUS.

The first step in the development of the logic processor is to define an

* instruction set. This set of instructions should allow a wide range of functions

to be performed on an image in single and multiple passes. The processor will

access a local neighborhood of each pixel and will produce an output based on a

comparison of the neighborhood to a template or a set of conditions. This

concept is illustrated for three image frames in Figure 2. The development of

instructions or constraints required for the logic processor are not difficult

to develop and have been generated for processors such as PICAP . What we shall

aim for is an efficient set of operations to allow high speed performance,

matched to the RADIUS machine. The type of neighborhood that is accessed, the

types of conditions that can be specified, and the types of mappings from the

* combination of local neighborhood and conditions to an output pixel determine

the instruction set parameters and specify a minimum capability for the

I, processor.

Once the processor instruction set is defined, we will determine an

* appropriate architecture. As with the RADIUS processors we will look towards

architectures that will be suited to VLSI implementation. For the same reasons
that motivated the design of RADIUS, we will probably utilize look-up tables to

.1 perform some of the operations, making good use of memory structures which are

easily designed.

A high level block diagram of a processor which could probably perform

the range of operations required of a logic processot is shown in Figure 3.

This processor is comprised of logic to form the local neighborhood, which can

be controlled to perform comparisons on the data in the neighborhood, and two

101

INPUT IMAGE 1107-

INPUT IMAGE 2

INPUTENIMAGEZ3 CONSTRINTSO

LOCAL NNEGGHBORHOOD5

IMA

102

?0952- 1

LINE 1ip

IMAGE A

"il ~LINE 2A '

IMAGE 8

LINE ...I8,8

8/ 10 102 4,

LINE 236 8 - IE
IMAGEB A1DLY

• 4

QW 8

8

1 RAM
L __. i I I = - iPUT

look-up tables to provide the mapping from the results of the comparisons and

the center pixel to an output pixel. The look-up tables, in addition to making

a chip easy to design, will also give the processor a great deal of flexibility.

As a benchmark example, we have investigated the median function. Using this

architecture, the processor would be capable of performing a median calculation

of some local neighborhoods with only 8 passes. This is just an indication of

the power a table-driven processor could provide.

104

All 337 HUISKSRESEARCH LAOS MALIBU CA F/0* 9/2
IDEC BI ftR MICO, S D FOUBE F3361 -O-C-1OBO

IjWCASSZI 5 D ~AFWAL-T-8-1095 ,a

I EE

,1 11 |2
12.23= MEg

1111 - L A 111

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANDARDS 1963-A

SECTION 7

We have-describZ ongoing work on the development of RADIUS, a real-time

image understanding system which is well suited to V'LSI. In addition to the

* development workwe have described, we are working on several relat~d tasksC_

including developing an interface between a PDP 11/34 and the RADIUS processor,

investigating further applications of residue arithmetic to image understanding,

and developing an integrated design automation capability that will allow us to

design and simulate LSI aad VLSI circuits.

.Zur future work will include further development of the RADIUS processor

and the development of the local area logic processor,,we described. When they

are both complete we will have an integrated pixel level pocessor that can

perform a wide range of functions in real-time and many more functions in near

real-time. We will also develop, n interface to the PDP 11 for the integrated

RADIUS-LOGIC processoi, and this will allow all pixel operations to be performed

at high speed, reducing greatly the CPU time needed for image understanding

programs.

I

~10

LO

II

REFERENCES

1. S.D. Fouse, G.R. Nudd, G.M. Thorne-Booth, P.A. Nygaard, and F.D. Gichard,
"A Residue Based Image Processor For VLSI Implementation," USCIPI Report
1010, March, 1981, pp. 73-98.

2. N. Szabo and R. Tanaka, Residue Arithmetic and its Applications to
Computer Technology (McGraw-Hill, New York, 1967). .

3. B. Kruse, "System Architecture for Image Analysis," Chapter 7 of
Structured Computer Vision, edited by S. Tanimoto and A. Klinger
(Academic Press, 1980).

107

